рефераты

Рефераты

рефераты   Главная
рефераты   Краткое содержание
      произведений
рефераты   Архитектура
рефераты   Астрономия
рефераты   Банковское дело
      и кредитование
рефераты   Безопасность
      жизнедеятельности
рефераты   Биографии
рефераты   Биология
рефераты   Биржевое дело
рефераты   Бухгалтерия и аудит
рефераты   Военное дело
рефераты   География
рефераты   Геодезия
рефераты   Геология
рефераты   Гражданская оборона
рефераты   Животные
рефераты   Здоровье
рефераты   Земельное право
рефераты   Иностранные языки
      лингвистика
рефераты   Искусство
рефераты   Историческая личность
рефераты   История
рефераты   История отечественного
      государства и права
рефераты   История политичиских
      учений
рефераты   История техники
рефераты   Компьютерные сети
рефераты   Компьютеры ЭВМ
рефераты   Криминалистика и
      криминология
рефераты   Культурология
рефераты   Литература
рефераты   Литература языковедение
рефераты   Маркетинг товароведение
      реклама
рефераты   Математика
рефераты   Материаловедение
рефераты   Медицина
рефераты   Медицина здоровье отдых
рефераты   Менеджмент (теория
      управления и организации)
рефераты   Металлургия
рефераты   Москвоведение
рефераты   Музыка
рефераты   Наука и техника
рефераты   Нотариат
рефераты   Общениеэтика семья брак
рефераты   Педагогика
рефераты   Право
рефераты   Программирование
      базы данных
рефераты   Программное обеспечение
рефераты   Промышленность
      сельское хозяйство
рефераты   Психология
рефераты   Радиоэлектроника
      компьютеры
      и перифирийные устройства
рефераты   Реклама
рефераты   Религия
рефераты   Сексология
рефераты   Социология
рефераты   Теория государства и права
рефераты   Технология
рефераты   Физика
рефераты   Физкультура и спорт
рефераты   Философия
рефераты   Финансовое право
рефераты   Химия - рефераты
рефераты   Хозяйственное право
рефераты   Ценный бумаги
рефераты   Экологическое право
рефераты   Экология
рефераты   Экономика
рефераты   Экономика
      предпринимательство
рефераты   Юридическая психология

 
 
 

Доклад: Леонард Эйлер

Леонард Эйлер (1707-1783)

Идеальный математик 18 века " так часто называют Эйлера. Это был недолгий век Просвещения, вклинившийся между эпохами жестокой нетерпимости. Всего за 6 лет до рождения Эйлера в Берлине была публично сожжена последняя ведьма. А через 6 лет после смерти Эйлера " в 1789 году " в Париже вспыхнула революция.

Эйлеру повезло: он родился в маленькой тихой Швейцарии, куда изо всей Европы приезжали мастера и ученые, не желавшие тратить дорогое рабочее время на гражданские смуты или религиозные распри. Так переселилась в Базель из Голландии семья Бернулли: уникальное созвездие научных талантов во главе с братьями Якобом и Иоганном. По воле случая юный Эйлер попал в эту компанию и вскоре сделался достойным членом базельского "питомника гениев .

Братья Бернулли увлеклись математикой, прочтя статьи Лейбница об исчислении производных и интегралов. Вскоре вокруг братьев сложился яркий математический кружок, и на полвека Базель стал третьим по важности научным центром Европы " после Парижа и Лондона, где уже процветали академии наук. Каждый год на кружке решались новые трудные и красивые задачи, а на смену им вставали новые увлекательные проблемы.

Но когда ученые орлята подросли, выяснилось, что в Швейцарии не хватит места для их гнезд. Зато в далекой России, по замыслу Петра 1 и по проекту Лейбница, была учреждена в 1725 году Петербургская Академия Наук. Русских ученых не хватало, и тройка друзей: Леонард Эйлер с братьями Даниилом и Николаем Бернулли (сыновьями Иоганна) " отправилась туда, в поисках счастья и научных подвигов.

Чем только не пришлось заниматься Эйлеру на новом месте! Он обрабатывал данные всероссийской переписи населения. Эту огромную работу Эйлер вел в одиночку, быстро проделывая все вычисления в уме: ведь компьютеров еще не было. Он расшифровывал дипломатические депеши, перехваченные русской контрразведкой. Оказалось, что эту работу математики выполняют быстрее и надежнее прочих специалистов. Он обучал молодых моряков высшей математике и астрономии, а также основам кораблестроения и управления парусным судном в штиль или в бурю. И еще составлял таблицы для артиллерийской стрельбы и таблицы движения Луны. Ведь в дальнем плавании Луна часто заменяла часы при определении долготы!

Только гений мог, выполняя всю эту работу, не забыть о большой науке. Эйлер оказался гением. За 15 лет своего первого пребывания в России он успел написать первый в мире учебник теоретической механики (не учить же простого студента по сложным книгам Ньютона!), а также курс математической навигации и многие другие труды. Писал Эйлер легко и быстро, простым и понятным языком. Столь же быстро он выучивал новые языки, но вкуса к литературе не имел. Математика поглощала все его время и силы.

В 26 лет Эйлер был избран российским академиком, но через 8 лет он переехал из Петербурга в Берлин. В чем дело" Да, тогдашнее российское правительство было малограмотным и свирепым. Только что завершилось правление Анны Иоанновны, и возобновилась чехарда военных переворотов. Однако Эйлера это впрямую не касалось: считаться "немцем" в Петербурге было безопасно и престижно, а ученые немцы были на вес золота.

Но Эйлер уже почувствовал себя одним из сильнейших математиков Европы " и вдруг заметил, что ему не с кем на равных поговорить о своей науке. Приезжая иностранная молодежь повзрослела и либо уехала из дикой и опасной России, либо погрязла в мелкой текущей работе. А первое поколение ученых россиян еще не выросло. Вспомним, что Ломоносова тогда послали на учебу в Германию! Эйлер решил переехать туда, где накал ученых дискуссий был повыше. Он выбрал Берлин, где молодой король Фридрих 2 Прусский решил создать научный центр не слабее парижского.

Эйлер провел в Берлине четверть века, и считал эти годы лучшими в своей жизни. У него вновь появилось много ученых друзей, включая президента Академии Наук " французского маркиза Мопертюи. Физик и географ, он в молодости проверял гипотезу Ньютона о сплюснутости земного шара возле полюсов. Мопертюи измерял длину градуса меридиана в Лапландии, пока его коллеги выполняли такую же работу в Перу. Теперь Мопертюи решил превзойти Ньютона, открыв новый математический закон природы: принцип наименьшего действия, который выделяет траектории реального движения тел (например, окружности или параболы) из огромного множества вообразимых траекторий.

Догадка Мопертюи была хороша, но ее математическая суть оказалась очень сложной, и понадобилась помощь Эйлера. Тот понял, что новый закон относится к области вариационного исчисления. Эйлер создал это исчисление в 1740-е годы: принцип Мопертюи стал одним из первых приложений новой науки. К нему Эйлер сделал замечательное добавление. Он заметил, что естественные математические условия допускают траектории не только минимального, но и максимального действия. Правда, в механике эти максимумы почему-то не наблюдаются; но в других областях физики " кто знает"

Эта догадка Эйлера подтвердилась в конце 20 века, когда физики начали изучать неравновесные системы, способные изменять свое строение и законы своего поведения. Оказалось, что переходы систем, выражающиеся в изменении их симметрий, лучше всего описываются траекториями экстремального (в частности " максимального) действия. Далеко залетела дерзкая мысль Эйлера из 1744 года!

В Берлине Эйлер занимался всей математикой сразу, и почти все у него получалось. Например, захотелось ему перенести все методы математического анализа на функции, зависящие от комплексных чисел " и создал он теорию функций комплексного переменного. Попутно Эйлер выяснил, что показательная функция и синусоида суть две стороны одной медали. Это выражается простой формулой: exp(i*t) = cos(t) + i*sin(t), которая доказывается при помощи степенных рядов.

Но если экспонента и синусоида " сестры, то возникает замечательная связь между двумя числами: Е (основанием самых удобных логарифмов) и П (полупериодом синусоиды). И если иррациональность Е доказывается в два счета (уж очень удобный ряд сходится к этому числу: Е = 1 + 1/1! + 1/2! + 1/3! + ...), то, наверное, этот путь приведет и к доказательству иррациональности П. Пусть молодые математики одолеют эту древнюю проблему, а Эйлеру своей славы достаточно!

Так рассудил Эйлер, и не ошибся: в 1766 году Иоганн Ламберт нашел первое доказательство иррациональности П. Но самое простое доказательство этого факта было найдено лишь в 1947 году " хотя открыть его мог бы и Эйлер, на 200 лет раньше!

Аналогично было с Большой Теоремой Ферма. Услыхав о ней, Эйлер решил сам придумать утраченное доказательство " и вскоре обнаружил "метод спуска", найденный Ферма веком раньше. Проверив этот метод для степеней 3 и 4, Эйлер стал проверять его для следующего простого показателя " 5. Тут обнаружились неожиданные затруднения, и Эйлер оставил эту тему молодым исследователям. Но только в конце 20 века эта проблема, кажется, приблизилась к окончательному решению.

В геометрии Эйлер также оставил значительный след. Он искал в ней не столько новые изящные факты, сколько общие теоремы, не укладывающиеся в догматику Евклида. Например, теорема о связи между числами вершин, ребер и граней выпуклого многогранника: В-Р+Г = 2. Эту формулу знал еще Декарт; но он не оставил ее доказательства. Эйлер легко нашел такое доказательство, а потом задумался: если формула справедлива для всех выпуклых тел, то чье же свойство она выражает" Может быть, свойство сферы, в которую можно деформировать любой выпуклый многогранник" Если так, то эта формула вряд ли верна для других замкнутых поверхностей " вроде тора или кренделя!

Проверка показала: для некоторых карт на торе выражение В-Р+Г принимает значение 0, а на кренделе " значение (-2). Но доказать эти равенства для всех карт на сложных поверхностях Эйлер не сумел, и оставил эту проблему потомкам. Удача пришла в 1890-е годы к Анри Пуанкаре " и он создал науку топологию.

В Берлине "король математиков" Леонард Эйлер работал с 1741 по 1766 год; потом он покинул Берлин и вернулся в Россию. Надвигалась старость, выросла огромная семья, а новая российская царица Екатерина 2 (немка по происхождению) предложила Эйлеру гораздо лучшие условия жизни, чем предоставлял своим академикам скуповатый и капризный Фридрих 2. Тесное общение с научной молодежью Эйлера уже не увлекало; он торопился успеть изложить на бумаге те бесчисленные открытия и догадки, которые осенили его в золотую берлинскую пору. Все научные журналы Европы охотно печатали новые статьи Эйлера. Его трудоспособность и вдохновение с годами нарастали, и многие тексты увидели свет лишь после смерти автора.

Переезд Эйлера в Петербург мало что изменил для математиков Европы. Великое светило лишь сместилось на восток, не исчезая с горизонта. Удивительно другое: слава Эйлера не закатилась и после того, как ученого поразила слепота (вскоре после переезда в Петербург). Неукротимый старец продолжал размышлять о математике и диктовать очередные статьи или книги до самой смерти. Она настигла его на 77 году жизни и на 16 году слепоты...

Именно в 1770-е годы вокруг Эйлера выросла Петербургская математическая школа, более чем наполовину состоявшая из русских ученых. Тогда же завершилась публикация главной его книги " "Основ дифференциального и интегрального исчисления", по которой учились все европейские математики с 1755 по 1830 год.

Она выгодно отличается от "Начал" Евклида и от "Принципов" Ньютона. Возведя стройное здание математического анализа от самого фундамента, Эйлер не убрал те леса и лестницы, по которым он сам карабкался к своим открытиям. Многие красивые догадки и начальные идеи доказательств сохранены в тексте, несмотря на содержащиеся в них ошибки " в поучение всем наследникам эйлеровой мысли. Первый учебник, предназначенный не для последователей, а для исследователей: таково завещание Эйлера и всей эпохи Просвещения, адресованное грядущим векам и народам.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.sch57.msk.ru/


© 2011 Рефераты